Phosphatidylinositol transfer protein beta displays minimal sphingomyelin transfer activity and is not required for biosynthesis and trafficking of sphingomyelin.

نویسندگان

  • Bruno Ségui
  • Victoria Allen-Baume
  • Shamshad Cockcroft
چکیده

Mammalian phosphatidylinositol transfer proteins (PITPs) alpha and beta, which share 77% identity, have been shown to exhibit distinct lipid-transfer activities. In addition to transferring phosphatidylinositol (PI) and phosphatidylcholine (PC), PITPbeta has been shown to transfer sphingomyelin (SM), and this has led to the suggestion that PITPbeta is important for the regulation of SM metabolism. In the present study, we have analysed the ability of human PITPbeta to transfer and regulate the metabolism of cellular SM. We report that, in vitro, the two PITP isoforms were comparable in mediating PI, PC or SM transfer. Using permeabilized HL-60 cells as the donor compartment, both PITP isoforms efficiently transferred PI and PC, and were slightly active towards SM, with the activity of PITPbeta being slightly greater. To identify which cellular lipids were selected by PITPs, PITPalpha and PITPbeta were exposed to permeabilized HL-60 cells, and subsequently repurified and analysed for their bound lipids. Both PITPs were able to select only PI and PC, but not SM. SM synthesis takes place at the Golgi, and PITPbeta was shown to localize in that compartment. To examine the role of PITPbeta in SM biosynthesis, Golgi membranes were used. Purified Golgi membranes had lost their endogenous PITPbeta, but were able to recruit PITPbeta when added exogenously. However, PITPbeta did not enhance the activities of either SM synthase or glucosylceramide synthase. Further analysis in COS-7 cells overexpressing PITPbeta showed no effects on (a) SM and glucosylceramide biosynthesis, (b) diacylglycerol or ceramide levels, (c) SM transport from the Golgi to the plasma membrane, or (d) resynthesis of SM after exogenous sphingomyelinase treatment. Altogether, these observations do not support the suggestion that PITPbeta participates in the transfer of SM, the regulation of SM biosynthesis or its intracellular trafficking.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An isoform of the phosphatidylinositol-transfer protein transfers sphingomyelin and is associated with the Golgi system.

An isoform of the phosphatidylinositol-transfer protein (PI-TP) was identified in the cytosol fraction of bovine brain. This protein, designated PI-TP beta, has an apparent molecular mass of 36 kDa and an isoelectric point of 5.4. The N-terminal amino acid sequence (21 residues) is 90% similar to that of bovine brain PI-TP, henceforth designated PI-TP alpha (molecular mass 35 kDa and pI 5.5). A...

متن کامل

Multi-Site Phosphorylation of Oxysterol Binding Protein (OSBP) Regulates Sterol Binding and Activation of Sphingomyelin Synthesis

Multi-Site Phosphorylation of Oxysterol Binding Protein (OSBP) Regulates Sterol Binding and Activation of Sphingomyelin Synthesis Asako Goto, Xinwei Liu, Carolyn-Ann Robinson and Neale D. Ridgway The Atlantic Research Centre, Depts. of Pediatrics, and Biochemistry & Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada B3H 4R2 *Running Head: Phosphorylation regulation of OSBP Ad...

متن کامل

Sphingomyelin Synthases Regulate Protein Trafficking and Secretion

Sphingomyelin synthases (SMS1 and 2) represent a class of enzymes that transfer a phosphocholine moiety from phosphatidylcholine onto ceramide thus producing sphingomyelin and diacylglycerol (DAG). SMS1 localizes at the Golgi while SMS2 localizes both at the Golgi and the plasma membrane. Previous studies from our laboratory showed that modulation of SMS1 and, to a lesser extent, of SMS2 affect...

متن کامل

Oxysterol Binding Protein-dependent Activation of Sphingomyelin Synthesis in the Golgi Apparatus Requires Phosphatidylinositol 4-Kinase IIα

Cholesterol and sphingomyelin (SM) associate in raft domains and are metabolically coregulated. One aspect of coordinate regulation occurs in the Golgi apparatus where oxysterol binding protein (OSBP) mediates sterol-dependent activation of ceramide transport protein (CERT) activity and SM synthesis. Because CERT transfer activity is dependent on its phosphatidylinositol 4 phosphate [PtdIns(4)P...

متن کامل

Multisite phosphorylation of oxysterol-binding protein regulates sterol binding and activation of sphingomyelin synthesis

The endoplasmic reticulum (ER)-Golgi sterol transfer activity of oxysterol-binding protein (OSBP) regulates sphingomyelin (SM) synthesis, as well as post-Golgi cholesterol efflux pathways. The phosphorylation and ER-Golgi localization of OSBP are correlated, suggesting this modification regulates the directionality and/or specificity of transfer activity. In this paper, we report that phosphory...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Biochemical journal

دوره 366 Pt 1  شماره 

صفحات  -

تاریخ انتشار 2002